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Abstract –Ontology is an important topic in computer science. It has many applications in various fields. Ontology 
similarity computation plays a critical role in practical implementations. In this paper, we use an idea of applying 
scoring functions for ontology function from learning theory in the implementation of ontology similarity computation. 
Some statistical characters are given. 
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1. Introduction  
 

In information retrieval, ontology has been used to 
compute semantic similarity (see [1]) and search 
extensions for concepts. Every vertex on an ontology 
graph represents a concept; a user searches for a concept 
A, will return similarities concepts of A as search 
extensions. Let G be a graph corresponding to ontology O, 
the goal of ontology similarity measure is to approach a 
similarity function which maps each pair of vertices to a 
real number. Choose the parameter M∈ +

 , the concepts 
A and B have high similarity if Sim(A,B)>M. Choose the 
parameter M∈ +

 , let A,B be two concepts on ontology 
and Sim(A,B)>M, then return B as retrieval expand when 
search concept A. Therefore, the quality of similarity 
functions plays an important role in such applications. 
Moreover, ontology is also used in image retrieval (see 
[2-5]) in networks.  Some effective methods for ontology 
similarity measure can be found in [6-11]. 

The common methods to design similarity functions 
for ontology applications are from the structure feature of 
ontology graph. 
Example. Let 0 < α , β , γ , χ  < 1 be real numbers and 
α + β + γ + χ =1. The similarity function can be 
represented as the weighting sum of their name similarity, 
structure similarity, instance similarly and attribute 
similarity: 

Sim(A,B) = α Simname(A,B) + β Simstructe(A,B)+ 
γ Sim instance(A,B)+ χ Simattribute(A,B), 

where each part of partial similarity is measured by name 
set, structure feature of ontology graph, instance set and 
attribute set of of two vertices, respectively. Thus, each 
partial similarity function may have complex formula and 
expression. Such methods have high computation 
complex and there are lots of parameters need to be 
chosen. 

In recent years, the ontology problem has gained 

attention in machine learning. In such ontology 
algorithm, one learns a real-valued function that assigns 
scores to instances. What is important is the relative list 
of vertices induced by those scores. This problem is 
distinct from both classification and regression, and it is 
natural to ask what kinds of generalization properties 
hold for algorithms for this problem. Although there have 
been several recent advances in developing algorithms for 
various settings of the ontology problem, the study of 
generalization properties of ontology algorithms has been 
largely limited to the special setting. 

Let V be the set of vertices of an ontology graph. For 
any two distinct vertices v1 and v2 it holds either v1  v2 
or v1  v2, but does not known which is true. Assuming 
that real numbers y1 and y2 are assigned to the vertices v1 
and v2 in ontology graph such that v1  v2 is equivalent 
to y1 ≤  y2. Let d-dimensional vectors v1 and v2 (use 
vertex instead of its vector, and this vector contain all 
information for its vertices) describe observed or 
measured features of the vertices and let the observation 
space V be a Borel subset of d

 . The aim of ontology 
algorithm on ontology graph is to obtain a ontology 
function f : V × V →  , i.e., a ontology rule, in the 
following way: 

 if f(v1 , v2) ≤ 0, then we predict that y1 ≤  y2. 
It need introduce a probabilistic setting in order to 
measure the quality of a given ontology function f .. We 
assume that two vertices are randomly selected from the 
V. It is described by a pair of identically distributed and 
independent (with respect to the measure P) random 
vectors Z1= (v1,y1) and Z2=(v2,y2) taking values in V 
×  . Here, variables y1 and y2 define the ordering as 
above which are unknown. 

    A ontology loss function is a convex and 
nonnegative function l that assigns, for f : V× V →   
and v, v’ ∈ V , a non-negative real number l(f; v,v0) 
interpreted as the loss of f in its relative ontology of v and 
v’. Let 
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Rl(f)= 1 2 1 2E( (sign( ) ( , )))l y y f v v−  
be convex risk of a ontology rule f. That is, the expected 
ontology error on the ontology graph for a ontology 
function f : V× V →   associated with the ontology loss 
function l . 

Denote the convex empirical risk as 

ˆ ( )lR f = 1 ( , )
( 1) f i j

i j
l z z

n n ≠− ∑  

where ( , )f i jl z z = 1 2 1 2(sign( ) ( , ))l y y f v v− . Note that, for 

a fixed ontology ontology function f,  ˆ ( )lR f  is a U-
statistic of the order two. Thus, features of U-process 
{ ˆ ( )lR f : f∈  F } are the basis for statistical characters of 

the ontology function fn = ˆarg min ( )l
f F

R f
∈

 as an estimator 

for unknown ontology function f* = arg min ( )l
f F

R f
∈

, where 

F is a family of ontology function. 
We are interested in the excess risk of an estimator fn 

for ontology applications. Generalization bounds are hot 
recent years in the learning theory, such research can 
refer [12-21].  

 In this paper, we give some statistical analysis for 
ontology learning algorithm. 
 
2. Setting and Basics  
 

Assume that ontology function is symmetric which 
implies 1 2( , )f v v =- 2 1( , )f v v  for every f∈ F. And then, 
ontology function class F is uniformly bounded, i.e., 
there exists some constant A1 > 0 such that for every f∈F 
and each pair of vertices v1, v2 ∈ V, we get 

1 2( , )f v v ≤ A1. We will not reiterate these conditions 
again 

Let µ  be a probability measure on V ×V and µρ  be a 
L2-pseudo-metric on ontology function family F with 

1 2( , )f fµρ = 2
1 1 2 2 1 2 1 2

1

1 [ ( , ) ( , )] ( , )
V V

f v v f v v d v v
A

µ
×

−∫ . 

The covering number ( , , )N t F µρ  for ontology function 
family F with a radius t > 0 and a pseudo-metric µρ  is the 
minimal number of balls (with respect to µρ ) to cover F 
with centers in F and radii t needed. Therefore, 

( , , )N t F µρ  can be regard as the minimal number m with 
satisfies 

,F F F m⊂ =
∃  f F∈∀  f F∈∃  ( , ) .f f tµρ ≤  

Think about the marginal distribution PV for the vector V 

and following empirical measures: V
nP  =

1

1
i

n

V
in
δ

=
∑  and nν  

= ( , )
1

( 1) i jV V
i jn n
δ

≠− ∑ with counting measure ( )δ ⋅ . The 

ontology function family F that we discuss satisfies 
following assumption: 
Assumption There exist constants Di , Ki > 0, i = 1,2 such 
that for each measures of the form: 1µ = PV ⊗ V

nP  , 

2µ = nν  and every t ∈ (0,1] we get 

                      ( , , ) iN t F K
ie D tµρ −≤   i=1.2. 

The tool used in this paper is Hoeffding’s decomposition 
[22] for a U-statistic ˆ ( )lR f − ˆ ( *)lR f  which allows to 
infer the equality 

( )lR f − ( *)lR f -[ ˆ ( )lR f − ˆ ( *)lR f ] 
=2Pn[ ( )lR f − ( *)lR f -

flP +
*flP ]-Un( fh - *fh ) 

here 

1( )
flP z  = 1 2 1 1[ ( , ) ]fE l Z Z Z z= , 

                          ( )nP g =
1

1 ( )
n

i
i

g Z
n =
∑ , 

Un( fh - *fh )= *
1 [ ( , ) ( , )]

( 1) f i j f i j
i j

h Z Z h Z Z
n n ≠

−
− ∑ , 

1 2 1 2 1 2( , ) ( , ) ( ) ( ) ( )
f ff f l l lh z z l z z P z P z R f= − − + . 

Hence, a difference between a U-statistic ˆ ( )lR f − 
ˆ ( *)lR f  and its expectation are break into the sum of iid 

random variables and a degenerate U-statistic Un( fh - *fh ) 
by Hoeffding’s decomposition. Such U-statistic 
degeneration implies the conditional expectation of its 
kernel is the zero-function, i.e., for each z1∈V×  , we 
have 1 2 * 1 2 1 1[ ( , ) ( , ) ] 0f fE h Z Z h Z Z Z z− = = . 

   Let Ω  be a class of real ontology functions 
uniformly bounded by a constant Ψ  > 0. And, 1ε ,…, nε  
is Rademacher sequence of iid random variables. 
Variables iε ’s are independent of the sample Z1, … ,Zn 
and take values in {1,−1} with equal probability. With 
such Rademacher sequence, denote 

                      ( )n∆ Ω =
1

1sup ( )
n

i i
i

g Z
n

ε
Ω∈Ψ =

∑ , 

as an expression ( ( ))nE ∆ Ω  the Rademacher average for 
class ψ . The expectation in such average is taken 

concern both samples Z1, . . . ,Zn and 1ε ,…, nε .  
   Sub-root function is a non-decreasing and non-

negative function φ : [0, ∞ )→ [0, ∞ ) satisfies that the 

function r → ( )r
r

φ  is non-increasing for every r > 0. 

This sub-root function has a lot of good characters, for 
instance, continuous and has the unique positive fixed 
point r* (it is the only positive solution for the equation 
φ  (r) = r). At last, we denote 

*Ω ={ gα :g∈ Ω ,α ∈ [0,1]} 
as a star-hull of Pg = Eg(Z1) and Ω . 

Now, we introduce the following lemma which can be 
found in [23] and [24]. 
Lemma 1. [23, 24] Let the class Ω  be such that for some 
constant B>0 and every g ∈ Ω  we have Pg2 ≤  BPg. 
Moreover, if there exists a sub-root function f with the 
fixed point r*, which satisfies 

φ  (r) ≥B * 2( : )nE g Pg r∆ ∈Ω ≤  
for each r ≥  r*, then for every T> 1 and α ∈  (0,1) 

P( g∈Ω∀  Pg ≤ ( )
1 n

T P g
T −

+ 6 *T r
B

+[22 Ω +5BT] 
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ln(1/ )
n
α ) ≥ 1-α . 

According to Lemma 1, we get our main result as 
follows.  
Theorem 1. Let the family of ontology function F be 
convex and satisfy Assumption. If the modulus of 
convexity of a ontology loss function l have value in the 
interval [−A1, A1] and with ( )tδ ≥Ctp for some constants 
C> 0 and p ≤ 2, then for each α ∈  (0,1) and T> 1 with 
probability at least 1-α  

f F∈∀  ( )lR f − ( *)lR f ≤ *( )
1 n f f

T P Pl Pl
T

−
−

+ 

1 1
ln ln(1/ )nC K

n
α+  

where constant C1 depend on T. 
Proof. Consider the ontology functions family 

*f fPl Pl− ={ *f fPl Pl− :f∈F} 
Since ontology loss function l is convex, it is locally 
Lipschitz with constant Lf. Due to F is uniformly 
bounded, so *f fPl Pl−  is uniformly bounded by 2LfA1 as 
well. Note that if the modulus of convexity of ontology 
loss l satisfies the assumption given in Theorem 1 and F 
is convex, then for some constant B and every function  
f∈F 

2
1 * 1[ ( ) ( )]f fE Pl Z Pl Z− ≤B[ ( )lR f − ( *)lR f ]. 

The precise value of the constant B can refer Lemma 5 of 
[25]. So, the relation required in Lemma 1 between 
expectations and second moments for functions from the 
considered class holds. Follow Lemma 1 for the class of 

ontology functions Ω  = { *

12
f f

l

Pl Pl
L A
−

: f∈F} and the sub-

root function 

            φ  (r)= 2

1

( * : )
2 n

l

B E g Pg r
L A

∆ ∈Ω ≤  

we obtain the probabilistic inequality as follows 

P( f F∈∀  ( )lR f − ( *)lR f ≤ *( )
1 n f f

T P Pl Pl
T

−
−

+ 

C1r*+C2
ln(1/ )

n
α ) ≥ 1-α . 

Here C1 and C2 are constants. 
    Denote 
                  *

rΩ ={ 2* :g Pg r∈Ω ≤ } 
for certain r > 0 and 

                   ξ =
*

2

1

1sup ( )
r

n

i
g i

g Z
n∈Ω =
∑ . 

Applying Chaining Lemma for empirical processes in 
[25], we infer 

*( )n rE∆ Ω ≤ *1 4
0

ln ( , , )
nr P

C E N t dt
n

ξ

ρΩ∫ , (1) 

where 

           1 2( , )
nP g gρ = 2

1 2
1

1 [ ( ) ( )]
n

i i
i

g Z g Z
n =

−∑ . 

Notice that *( , , )
nr PN t ρΩ ≤ *( , , )

nPN t ρΩ ≤  
*( / 2, , )

nPN t ρΩ . Moreover,  

( , , )
f nl PN t P ρ  

≤ ( , , )
fl P PN t P ρ ⊗  

≤ ( , , )V V
nP P

l

tN F
L

ρ
⊗

. 

The first inequality above follows from Nolan and 
Pollard ([26], Lemma 20) and to verify the second one we 
use the fact that l is locally Lipschitz. Thus, Assumption 
above characters of covering numbers imply that for 
certain positive constants C and C1 

*ln ( , , )
nr PN t ρΩ ≤C1K1 ln C

t
. 

Thus, the right hand of (1) can be bounded by 

1 4
1 0

ln
K CC E dt
n t

ξ

∫ . According to the Jensen’s 

inequality, we infer 

1 4
1 0

ln
K CC E dt
n t

ξ

∫ ≤ 1
1 ln( )

K CC E
n E

ξ
ξ

 

Moreover,  we get 
Eξ ≤ *8 ( )n rE r∆ Ω +  

Combining what we discuss above, we obtain 

*( )n rE∆ Ω ≤ *1
1 8 ( ) lnn r

K CC E r
n t

∆ Ω + . 

This show that for the fixed point r* implies 

                    r* ≤ 1 1
ln nC K
n

.                                          
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